[1]周超,邵景力,崔亚莉,等.基于地下水流数值模型的改进DRASTIC方法[J].水文地质工程地质,2018,45(1):15-22.
 ZHOU Chao,SHAO Jingli,CUI Yali,et al.A Groundwater-Model-Based DRASTIC for assessing aquifer vulnerability[J].Hydrogeology & Engineering Geology,2018,45(1):15-22.
点击复制

基于地下水流数值模型的改进DRASTIC方法()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
45卷
期数:
2018年1期
页码:
15-22
栏目:
OA栏目
出版日期:
2018-01-15

文章信息/Info

Title:
A Groundwater-Model-Based DRASTIC for assessing aquifer vulnerability
文章编号:
1000-3665(2018)01-0015-08
作者:
周超邵景力崔亚莉张秋兰
中国地质大学(北京)水资源与环境学院,北京100083
Author(s):
ZHOU Chao SHAO Jingli CUI Yali ZHANG Qiulan
School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing100083, China
关键词:
脆弱性评价地下水数值模型DRASTICMODFLOW
Keywords:
vulnerability assessment groundwater model DRASTIC MODFLOW
分类号:
P641.2;X143
文献标志码:
A
摘要:
地下水脆弱性评价作为地下水资源保护和地下水开发利用规划的一个重要工具,被广泛的应用于实际工作中。尝试利用地下水数值模型为改进的DRASTIC方法提供数据支持,并以北京市平原区为例探讨地下水脆弱性评价方法。评价结果与传统方法在高值区和低值区具有很好的对应性,而基于模型的方法在地下水水位计算、含水层介质和水力传导系数确定上较传统方法更具优势,如地下水位的计算上较传统方法更为客观地体现含水介质对地下水运动的影响,且能够方便地获得模拟期内任意时间的流场数据;经由模型调试后的含水层参数数据,较传统方法更为准确。评价结果分区之间的变化较传统方法更为平滑,更符合水文地质条件渐变的特性。
Abstract:
Assessment of groundwater vulnerability as an essential tool for protection and management of groundwater resources is widely used. This article uses a modified DRASTIC model, in which a groundwater flow model is used as a data supplier, to evaluate the vulnerability of the Beijing plain aquifer, and discuss the pros and cons of this new method. The results of this method and ordinary one are familiar in high-value and low-value regions. However, the new method is more competitive in calculating water table, hydraulic conductivity and mapping aquifer media. The groundwater-model-based way is more objective in describing the influence of the aquifer media on groundwater movement and the time-based water table is available. The parameters describing the aquifer media of a calibrate groundwater model is more precise than the statistics-based way. The values between the estimated regions are more smooth than the ordinary one, which is accordance with the continuity of hydrogeological conditions.

参考文献/References:

[1]WANG J J, HE J T, CHEN H H. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China[J]. Sci Total Environ, 2012, 432: 216-226.
[2]张珍, 温忠辉, 鲁程鹏, 等. 改进的DRASTIC地下水脆弱性评价模型及应用[J]. 水资源保护, 2014,30(6): 13-18.
[ZHANG Z, WENG Z H, LU C P, et al. A modified DRASTIC model for assessment of groundwater vulnerability and its application[J]. Water Resources Protection, 2014,30(6): 13-18.(in Chinese)]
[3]郝静, 张永祥, 丁飞, 等. 改进的DRASTIC模型在地下水易污染性模糊评价中的应用[J]. 水文地质工程地质, 2013,40(5): 34-39.
[HAO J, ZHANG Y X, DING F, et al. Improved DRASTIC model and its applying for the Fuzzy evaluation of groundwater vulnerability[J]. Hydrology & Engineering Geology, 2013,40(5): 34-39.(in Chinese)]
[4]王国利, 周惠成, 杨庆. 基于DRASTIC的地下水易污染性多目标模糊模式识别模型[J]. 水科学进展, 2000,11(2): 173-179.
[WANG G L, ZHOU H C, YANG Q. A multi-objective fuzzy pattern recognitionmodel for assessing groundwater vulnerabil ity based on the DRASTIC system[J]. Advances in Water Science, 2000,11(2): 173-179.(in Chinese)]
[5]孙才志, 奚旭, 董璐. 基于ArcGIS的下辽河平原地下水脆弱性评价及空间结构分析[J]. 生态学报, 2015, 35(20): 6635-6646.
[SUN C Z, XI X, DONG L. An ArcGIS-based analysis of groundwater spatial structure and groundwater vulnerability in the lower reaches of the Liaohe river plain[J]. Acta Ecologica Sinica, 2015, 35(20): 6635-6646.(in Chinese)]
[6]周书葵, 江海浩, 陈朝猛, 等. 改进AHP-DRASTIC模型用于地下水U(Ⅵ)污染风险评价及回归分析[J]. 环境工程, 2016,34(1): 130-134.
[ZHOU S Q, JIANG H H, CHEN C M, et al. Risk assessment of U(VI) pollution to groundwater based on modified AHP-drastic model and analysis of the linear regression[J]. Enviromental Engineering, 2016,34(1): 130-134.(in Chinese)]
[7]李定龙, 王宗庆, 杨彦. 基于综合方法的区域浅层地下水脆弱性评价——以常州市为例[J]. 环境化学, 2013, 32(11): 2099-2108.
[LI D L, WANG Z Q, YANG Y. Regional shallow groundwater vulnerability assessment based on comprehensive approach: take Changzhou as an example[J]. Environmental Chemistry, 2013, 32(11): 2099-2108.(in Chinese)]
[8]PACHECO F A L, PIRES L, SANTOS R M B, et al. Factor weighting in DRASTIC modeling[J]. Sci Total Environ, 2015, 505: 474-486.
[9]NESHAT A, PRADHAN B. An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment[J]. Nat Hazards, 2015, 76(1): 543-563.
[10]陈浩, 王贵玲, 侯新伟, 等. 城市周边地下水系统脆弱性评价——以栾城县为例[J]. 水文地质工程地质, 2006,33(5): 103-105.
[CHENG H, WANG G L, HOU X W, et al. The groundwater vulnerability assessment of the district around city: taking Luancheng County as an example[J]. Hydrology & Engineering Geology, 2006,33(5): 103-105.(in Chinese)]
[11]SHEKHAR S, PANDEY A C, TIRKEY A S. A GIS-based DRASTIC model for assessing groundwater vulnerability in hard rock granitic aquifer[J]. Arab J Geosci, 2015, 8(3): 1385-1401.
[12]KURA N U, RAMLI M F, IBRAHIM S, et al. Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods[J]. Environmental Science and Pollution Research, 2015, 22(2): 1512-1533.
[13]张丽君. 地下水脆弱性和风险性评价研究进展综述 [J]. 水文地质工程地质, 2006, 33(6): 113-119.
[ZHANG L J. Review on groundwater vulnerability and risk assessment [J]. Hydrology & Engineering Geology, 2006,33(6): 113-119.(in Chinese)]
[14]曲文斌, 王欣宝, 钱龙, 等. 石家庄城市区地下水脆弱性评价研究[J]. 水文地质工程地质, 2007,34(6): 6-9.
[QU W B, WANG X B, QIAN L, et al. Frangibility evalution of the ground water in Shijiazhuang city[J]. Hydrology & Engineering Geology, 2007,34(6): 6-9.(in Chinese)]
[15]AL HALLAQ A H, ABU ELAISH B S. Assessment of aquifer vulnerability to contamination in Khanyounis Governorate, Gaza Strip-Palestine, using the DRASTIC model within GIS environment[J]. Arab J Geosci, 2012, 5(4): 833-847.
[16]JENKS G F, CASPALL F C. Error on Choroplethic Maps: Definition, Measurement, Reduction[J]. Annals of the Association of American Geographers, 1971, 61(2): 217-244.
[17]BABIKER I S, MOHAMED M A A, HIYAMA T, et al. A GIS-based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan[J]. Sci Total Environ, 2005, 345(1/3): 127-140.
[18]RAHMAN A. A GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India[J]. Appl Geogr, 2008, 28(1): 32-53.
[19]MOHAMMADI K, NIKNAM R, MAJD V J. Aquifer vulnerability assessment using GIS and fuzzy system: a case study in Tehran-Karaj aquifer, Iran[J]. Environ Geol, 2009, 58(2): 437-446.
[20]SAIDI S, BOURI S, BEN DHIA H, et al. Assessment of groundwater risk using intrinsic vulnerability and hazard mapping: application to souassi aquifer, tunisian sahel[J]. Agricultural Water Management, 2011, 98(10): 1671-1682.
[21]张安京, 叶超, 李宇, 等. 北京地下水[M]. 北京: 中国大地出版社, 2008.
[ZHANG A J, YE C, LI Y, et al. Groundwater of Beijing[M]. Beijing: China Land Press, 2008.(in Chinese)]
[22]BRINDHA K, ELANGO L. Cross comparison of five popular groundwater pollution vulnerability index approaches[J]. J Hydrol, 2015, 524: 597-613.
[23]李绍飞, 孙书洪, 王勇. 基于DRASTIC的含水层脆弱性模糊评价方法与应用[J]. 水文地质工程地质, 2008,35(3): 112-117.
[LI S F, SUN S H, WANG Y. Application of the method for fuzzy assessment of aquifer vulnerability based on DRASTIC[J]. Hydrology & Engineering Geology, 2008,35(3): 112-117.(in Chinese)]

相似文献/References:

[1]骆乾坤,王佩,朱国荣,等.水文地质参数识别的快速和谐搜索算法[J].水文地质工程地质,2011,38(4):14.
 LUO Qian-kun,WANG Pei,ZHU Guo-rong.Fast harmony search algorithm and its application to hydrogeological parameters identification[J].Hydrogeology & Engineering Geology,2011,38(1):14.
[2]崔瑞娟,冶雪艳,杜新强,等.第二松花江干流傍河开采潜力评价[J].水文地质工程地质,2019,46(1):35.[doi:10.16030/j.cnki.issn.1000-3665.2019.01.05]
 CUI Ruijuan,YE Xueyan,DU Xinqiang,et al.Potential evaluation of river bank infiltration along the Second Songhuajiang River[J].Hydrogeology & Engineering Geology,2019,46(1):35.[doi:10.16030/j.cnki.issn.1000-3665.2019.01.05]

备注/Memo

备注/Memo:
收稿日期: 2017-08-01;修订日期: 2017-09-10
基金项目: 国家科技基础资源调查专项(2017FY100405)
第一作者: 周超(1986-),男,博士研究生,主要从事地下水科学与工程研究。E-mail:maxcroft@163.com通讯作者: 邵景力(1959-),男,教授,主要从事水文地质学方面的研究。E-mail:jshao@cugb.edu.cn
更新日期/Last Update: 2018-02-05