[1]张必昌,胡成,陈刚,等.利用电导率测井与压水试验联合评价岩体渗透性的方法[J].水文地质工程地质,2019,46(3):62.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.09]
 ZHANG Bichang,HU Cheng,CHEN Gang,et al.Method of evaluating the permeability of rock mass by the combination of packer test and flowing fluid electrical conductivity log[J].Hydrogeology & Engineering Geology,2019,46(3):62.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.09]
点击复制

利用电导率测井与压水试验联合评价岩体渗透性的方法()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年3期
页码:
62
栏目:
水文地质
出版日期:
2019-05-15

文章信息/Info

Title:
Method of evaluating the permeability of rock mass by the combination of packer test and flowing fluid electrical conductivity log
文章编号:
1000-3665(2019)03-0062-08
作者:
张必昌1胡成2陈刚2张翛1段丹丹1
1.山西省交通科技研发公司,山西 太原030006; 2.中国地质大学(武汉)环境学院,湖北 武汉430074
Author(s):
ZHANG Bichang1HU Cheng2CHEN Gang2ZHANG Xiao1DUAN Dandan1
1.Shanxi Transportation Technology Research & Development Co.,Ltd,Taiyuan,Shanxi030006,China;2.School of Environmental Studies,China University of Geosciences (Wuhan),Wuhan,Hubei430074,China
关键词:
裂隙岩体渗透系数压水试验电导率测井地下水封洞库
Keywords:
fractured rock mass permeability coefficient packer test flowing fluid electrical conductivity logging groundwater sealing reservior
分类号:
P641.2;TU45
DOI:
文献标志码:
A
摘要:
进行地下水封洞库的水封条件分析评价必须获得准确可靠的建库岩体渗透性参数,而获取岩体渗透系数常用的传统水文地质试验方法存在明显的不足。为了试验数据的精确性,文章基于广义径向流(GRF)理论,依托烟台某地下水封洞工程,以丙烷洞库交通巷道钻孔为例,开展压水试验并采用非稳定流理论的GRF模型优化解析试验数据,结合电导率测井试验确定导水裂隙位置并求出裂隙范围内的渗透系数。试验结果表明:GRF模型比稳定流模型解析结果大1~2倍。原因在于裂隙岩体进行分段压水时,各段水流维度不一,传统稳定流理论假设水流维度只有二维流,而GRF模型为空间n维裂隙流用压水过程全部数据进行拟合,不同时段在相应维度下进行计算,因此其求算的渗透系数K更接近于试验段真值,具有更好的兼容性和实用性。同时利用电导率测井试验计算长度(导水裂隙范围)远远小于压水试验段计算长度的特点,可将GRF模型解析得出的分段渗透系数做进一步细化平均以提高压水试验解析结果的精度,为水封洞库效果评价、洞库涌水量预测提供更加科学可靠的数据基础。
Abstract:
It is necessary to obtain accurate and reliable permeability parameters of the rock mass in the analysis and evaluation of the water-sealed conditions of the underground water-sealed cavern, while the commonly used hydrogeological test methods for obtaining the rock mass permeability coefficient exist obvious deficiencies. In order to keep accuracy of the data, relying on a certain groundwater sealing reservoir project in Yantai, the paper took the propane cavern traffic tunnel drilling as an example, carried out the water pressure test and used the theory of unsteady flow of GRF model to optimize the analytical test data based on the generalized radial flow theory. The water-conducting fracture location was confirmed by the flowing fluid electrical conductivity logging test and the permeability coefficient within the fracture range is obtained. The test results show that the analytical results of GRF model is 1-2 times larger than that of steady flow model. The reason is that when the fractured rock mass is subjected to sectional water pressure, the water flow dimensions of each section are different. The traditional steady flow theory assumes that the water flow dimension has only two-dimensional flow, while the GRF model fits all the data of the pressurized n-dimensional fracture flow with the pressure water process. The time period is calculated under the corresponding dimension. Therefore, the calculated permeability coefficient K is closer to the true value of the test section, which is more compatibility and practicality. The use of flowing fluid electrical conductivity logging test will further refine the average permeability coefficient obtained from the GRF model analysis, and provide a more scientific and reliable data base for the evaluation of the effect of the water-sealed cavern.

参考文献/References:

[1]范波, 罗平平. 钻孔压水试验理论研究现状及展望[J]. 煤炭工程, 2010, 1(1):91-94.
[FAN B,LUO P P. Present status and outlook of theoretical study on borehole water pressurized test[J]. Coal Engineering, 2010, 1(1):91-94.(in Chinese)]
[2]JACOB C E, LOHMAN S W. Nonsteady flow to a well of constant drawdown in an extensive aquifer[J]. Transactions American Geophysical Union, 1952, 33(4):559-569.
[3]ENACHESCU C, RAHM N. Hydraulic characterisation of the Stuttgart formation at the pilot test site for CO storage, Ketzin, Germany[J]. International Journal of Greenhouse Gas Control, 2010, 4(6):960-971.
[4]HURST W, CLARK J D, BRAUER E B. The skin effect in producing wells[J]. Journal of Petroleum Technology, 1969, 21(11):1483-1489.
[5]BARKER J A. A generalized radial flow model for hydraulic tests in fractured rock[J]. Water Resources Research, 1988, 24(24):1796-1804.
[6]张祯武, 秦刚. 利用定流量非稳定流压水试验求水文地质参数[J]. 岩石力学与工程学报, 2004, 23(2):344-347.
[ ZHANG Z W,QIN G. Determination of hydro-geological parameters by water pressure test of non-stationary flow with constant discharge[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2):344-347. (in Chinese)]
[7]张祯武,李兴成,徐光祥. 利用定压力非稳定流压水试验求水文地质参数[J]. 岩石力学与工程学报,2004,23(15):2543-2546.
[ZHANG Z W,LI X C,XU G X. Determination of hydrogeological parameters by water pressure test of steady-pressure and non-stationary flow[J]. Chinese Journal of Rock Mechanics and Engineering, 2004,23(15):2543-2546. (in Chinese)]
[8]王旭升,万力. 单组裂隙压水试验的一个非稳定渗流模型[J]. 长江科学院院报,2009,26(10):35-38.
[WANG X S, WAN L. Non-steady flow model of water injecting tests on a group of facture[J]. Journal of Yangtze River Scientific Research Institute,2009, 26(10):35-38. (in Chinese)]
[9]徐尚壁. 压水试验求测渗透系数的射渗理论与方法[J]. 水利水运科学研究,1996(1):24-33.
[XU S B.Spouting permeation theory and method for determing permeability coefficient by pressure water test[J]. Hydro-Science and Engineering,1996(1):24-33. (in Chinese)]
[10]GRINGARTEN A C,RAMEY H J. Unsteady-state pressure distributions created by a well with a single horisontial fracture, partial penetration or restricted entry[J]. Society of Petroleum Engineers, 1974,4(3):413-426.
[11]OZKAN E, RAGHAVAN R. Some new solutions to solve problems in well test analysis: part 2[J]. Computational Considerations and Applications,1988, 6(3):359-368.
[12]TSANG C F, HUFSCHMIED P, HALE F V. Determination of fracture inflow parameters with a borehole fluid conductivity logging method[J]. Water Resources Research, 1990, 26(4):561-578.
[13]DOUGHTY C, TSANG C F, ROSBERG J E, et al. Flowing fluid electrical conductivity logging of a deep borehole during and following drilling: estimation of transmissivity, water salinity and hydraulic head of conductive zones[J]. Hydrogeology Journal, 2017, 25:1-17.
[14]MOIR R S, PARKER A H, BOWN R T. A simple inverse method for the interpretation of pumped flowing fluid electrical conductivity logs[J]. Water Resources Research, 2014, 50(8):6466-6478.
[15]DOUGHTY C, TSANG C F. Signatures in flowing fluid electric conductivity logs[J]. Journal of Hydrology, 2005, 310(1):157-180.
[16]丁立丰,郭啟良,王成虎,等.某石油储备库吕荣压水试验与水力摩阻[J].水文地质工程地质,2011,38(6):35-38.
[DING L F,GUO Q L,WANG C H, et al. Lugeon water pressure test and its hydraulic friction in an oil reserve library project[J].Hydrogeology & Engineering Geology, 2011,38(6):35-38. (in Chinese)]
[17]王新峰,梁杏,孙蓉琳,等.一种层状岩体压水试验成果计算分析渗透性的新方法[J].水文地质工程地质,2011, 38(1):46-52.
[WANG X F,LIANG X,SUN R L, et al. A new method of hydraulic conductivity calculating and analysis by water pressure test in layered rock[J]. Hydrogeology & Engineering Geology,2011, 38(1):46-52. (in Chinese)]
[18]水利水电工程钻孔压水试验规程:SL31-2003[S].北京: 中国水利水电出版社,2003.
[Code of water pressure test in borehole for water resources and hydropower engineering:SL31-2003[S].Beijing: China Water Power Press,2003.(in Chinese)]
[19]乔婷婷. 基于Matlab的颤振自激力时域化[J]. 山西交通科技, 2011(2):62-63.
[QIAO T T. The time domain of flutter self-excited forces based on Matlab[J]. Shanxi Science & Technology of Communications, 2011(2):62-63.(in Chinese)]

相似文献/References:

[1]孙德安,许志良.结构性软土渗透特性研究[J].水文地质工程地质,2012,39(1):36.
 SUN De an,XU Zhi liang.Permeability of structural soft soils[J].Hydrogeology & Engineering Geology,2012,39(3):36.
[2]伍艳,王玮屏,任海平,等.水-土作用对土体渗透系数的影响研究[J].水文地质工程地质,2011,38(6):39.
 WU Yan,WANG Wei-ping,REN Hai-ping,et al.Experimental studies of coefficient of permeability of soil affected by water-soil interactions[J].Hydrogeology & Engineering Geology,2011,38(3):39.
[3]杨博,张虎元,赵天宇,等.改性黄土渗透性与孔隙结构的依存关系[J].水文地质工程地质,2011,38(6):96.
 YANG Bo,ZHANG Hu-yuan,ZHAO Tian-yu,et al.Responsibility of permeability of modified loess soil on microstructure[J].Hydrogeology & Engineering Geology,2011,38(3):96.
[4]张莉丽,张辛,王云,等.非常低延展性裂隙岩体REV存在性研究[J].水文地质工程地质,2011,38(5):20.
 ZHANG Li-li,ZHANG Xin,WANG Yun,et al.Determining of the REV for fracture rock mass of very low ductility[J].Hydrogeology & Engineering Geology,2011,38(3):20.
[5]张光伟,张虎元,杨博,等.复合土工膜渗透性能试验研究[J].水文地质工程地质,2011,38(5):58.
 ZHANG Guang-wei,ZHANG Hu-yuan,YANG Bo.Experimental investigation of the permeability of composite geomembrane[J].Hydrogeology & Engineering Geology,2011,38(3):58.
[6]陈强,聂德新,潘思祎,等.渗透系数作为岩体卸荷分带量化指标的研究[J].水文地质工程地质,2011,38(4):48.
 CHEN Qiang,NIE De-xin,PAN Si-yi,et al.A study of coefficient of permeability as a quantitative classification index for unloaded zones of rockmass[J].Hydrogeology & Engineering Geology,2011,38(3):48.
[7]陈海洋,滕彦国,王金生,等.基于GA-SVR的渗透系数参数反演方法[J].水文地质工程地质,2011,38(2):14.
 CHEN Hai-yang,TENG Yan-guo,WANG Jin-sheng.Methods of estimation of hydraulic conductivity with genetic algorithm-support vector regression machine[J].Hydrogeology & Engineering Geology,2011,38(3):14.
[8]王新峰,梁杏,孙蓉琳,等.一种层状岩体压水试验成果计算分析渗透性的新方法[J].水文地质工程地质,2011,38(1):46.
 WANG Xin-feng,LIANG Xing,SUN Rong-lin,et al.A new method of hydraulic conductivity calculating and analysis by water pressure test in layered rock[J].Hydrogeology & Engineering Geology,2011,38(3):46.
[9]单慧媚,梁合诚,刘佳伟,等.饱水过程中松散土体渗透性变化研究[J].水文地质工程地质,2010,37(5):97.
 SHAN Hui-mei,LIANG He-cheng,LIU Jia-wei,et al.A testing study of variation in permeability of unconsolidated soil under saturation[J].Hydrogeology & Engineering Geology,2010,37(3):97.
[10]赵天宇,张虎元,严耿升,等.渗透条件对膨润土改性黄土渗透系数的影响[J].水文地质工程地质,2010,37(5):108.
 ZHAO Tian-yu,ZHANG Hu-yuan,YAN Geng-sheng,et al.Influence of penetrative conditions on permeability ofmodified loess soil by bentonite[J].Hydrogeology & Engineering Geology,2010,37(3):108.

备注/Memo

备注/Memo:
收稿日期: 2018-06-28; 修订日期: 2018-12-24
基金项目: 国家自然科学基金项目资助(41401539);山西省交通厅建设科技项目(17-2-03);山西省交通厅科技项目(2017-1-16);山西省重点研发计划项目(201603D321118)
第一作者: 张必昌(1994-),男,硕士研究生,主要研究方向为水文地质、工程地质。E-mail:1300723029@qq.com
通讯作者: 胡成(1976-),男,博士,副教授,主要从事3S技术及水文地质、工程地质的教学及研究工作。E-mail:hu_cheng@cug.edu.cn
更新日期/Last Update: 2019-05-15