[1]郭朋瑜,吉锋,何双,等.节理分布位置对岩体剪切破裂特征影响试验研究[J].水文地质工程地质,2019,46(3):81.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.11]
 GUO Pengyu,JI Feng,HE Shuang,et al.An experimental study of the influence of discontinuous structural planes at different locations on the shear fracture characteristics of rock mass[J].Hydrogeology & Engineering Geology,2019,46(3):81.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.11]
点击复制

节理分布位置对岩体剪切破裂特征影响试验研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年3期
页码:
81
栏目:
工程地质
出版日期:
2019-05-15

文章信息/Info

Title:
An experimental study of the influence of discontinuous structural planes at different locations on the shear fracture characteristics of rock mass
文章编号:
1000-3665(2019)03-0081-07
作者:
郭朋瑜12吉锋12何双12胡如刚12梁德爽12易林立12蒋彦如1
1.成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都610059;2.成都理工大学环境与土木工程学院,四川 成都610059
Author(s):
GUO Pengyu12 JI Feng12 HE Shuang12 HU Rugang12 LIANG Deshuang12 YI Linli12Jiang Yanru12
1.State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, Sichuan610059, China; 2. College of Environment and Civil Engineering, Chengdu University of Technology, Chengdu, Sichuan610059, China
关键词:
节理位置非贯通节理剪切试验抗剪强度破裂形貌
Keywords:
joints location discontinuous structural plane direct shear test shear strength fracture morphology
分类号:
TU 459+.2
DOI:
文献标志码:
A
摘要:
节理分布位置影响岩体综合抗剪强度,并控制“锁固段”型岩质边坡启动和破裂演化。通过模型试件剪切试验,分析了节理分布位置对岩体综合抗剪强度和破裂特征的影响程度。试件模型以水泥砂浆为材料,在剪切面不同位置预制封闭节理,使其成为四周密封、内部节理贯通的模型。在不同法向应力下进行剪切试验,测定综合抗剪强度变化规律和剪切破裂特征。试验结果表明:试样破裂面可分为翼部拉张区、翼部压剪区、端部拉张区三部分,各区面积所占比例随节理位置变化而波动。剪切强度参数也随节理位置变化而规律性波动,且法向应力越大,变化幅度越大。
Abstract:
The joint distribution position has an effect on the comprehensive shear strength of rock mass and controls the initiation and fracture evolution of the locked segment type of a rock slope. The influence degree of the joint distribution on the comprehensive shear strength and fracture characteristics of rock mass is analyzed through model specimen making and shear tests. In the tests the cement mortar is taken as the model material, and the closed joint is prefabricated at different positions of the shear plane, making it a model with the sealing around and the internal joint through. The shear tests are carried out under different normal stresses to determine the variation law of shear strength and shear rupture characteristics. The test results show that the fracture surface of the sample can be divided into three parts: wing-tensile failure zone, wing compression-shear failure zone and end-tensile failure zone. The shear strength parameters also fluctuate regularly with the change in joint positions, and the greater the normal stress, the greater the variation range.

参考文献/References:

[1]周维垣.高等岩石力学[M].北京: 水利电力出版社, 1990: 322-325.
[ZHOU W Y. Higher rock mechanics[M]. Beijing: China Water & Power Press, 1990: 322-325.(in Chinese)]
[2]Stimpson B. Failure of slope containing discontinuous planar joints[C]//Proc. 19th U. S. Symp. on Rock Mechanics, 1978: 296-300.
[3]Lajtai E Z. Shear strength of weakness planes in rock[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1969,6(7): 499-515.
[4]Lajtai E Z. Strength of discontinuous rocks in direct shear[J]. Geotchnique, 1969,19(2): 218-233.
[5]白世伟, 任伟中, 丰定祥, 等. 共面闭合断续节理岩体强度特性直剪试验研究[J]. 岩土力学, 1999,20(2): 10-16.
[BAI S W, REN W Z, FENG D X, et al. Research on the strength behaviour of rock containing coplanar close intermittent joints by direct shear test[J]. Rock and Soil Mechanics, 1999, 20(2): 10-16.(in Chinese)]
[6]Gehle C, Kutter H K. Breakage and shear behavior of intermittent rock joints[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 2003, 40: 687-700.
[7]夏才初, 肖维民, 刘远明. 非贯通节理的岩桥弱化力学模型研究[J]. 岩石力学与工程学报, 2010,29(8): 1538-1545.
[XIA C C, XIAO W M, LIU Y M. Study on the weakening mechanical model of rock bridge of non-penetrating joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2010,29 (8): 1538-1545.(in Chinese)]
[8]刘远明, 夏才初. 非贯通节理岩体直剪贯通模型和强度研究[J]. 岩土工程学报, 2006,28(10): 1242-1247.
[LIU Y M, XIA C C. Study on models and strength behavior of rock mass containing discontinuous joints[J]. Chinese Journal of Geotechnical Engineering, 2006,28(10): 1242-1247.(in Chinese)]
[9]郭牡丹, 朱浮声, 王述红, 等. 岩体非贯通结构面的岩桥贯通准则研究[J]. 岩土工程学报, 2013,39(8): 1513-1518.
[GUO M D, ZHU F S, WANG S H, et al. Study on the interconnection criteria of rock Bridges with non-penetrating structures[J]. Chinese Journal of Geotechnical Engineering, 2013,39 (8): 1513-1518.(in Chinese)]
[10]陈国庆,王剑超,王伟,等. 不同连通率断续节理岩体直剪破坏特征[J].工程地质学报,2017,25(2): 322-329.
[CHEN G Q, WANG J C, WANG W, et al. Characteristics of direct shear failure of fractured joints with different connectivity rate[J]. Journal of Engineering Geology, 2017,25(2): 322-329.(in Chinese)]
[11]朱维申,周浩,李邦翔,等. 节理岩体剪切试验的非连续变形方法分析[J].水文地质工程地质, 2015, 42(5): 49-53.
[ZHU W S, ZHOU H, LI B X, et a1. DDARF analysis of ahear tests of jointed rock mass[J]. Hydrogeology & Engineering Geology, 2015, 42(5): 49-53. (in Chinese) ]
[12]Adams M, Sines G. Crack extension from flaws in a brittle material subjected to compression[J]. Tectonophysics, 1978, 49(1-2): 97-118.
[13]Dyskin A V, Jewell R J, Joer H, et al. Experiments on 3-D cracks growth in uniaxial compression[J]. International Journal of Fracture, 1994, 65(4): R77-R83.
[14]Sahouryeh E, Dyskin A V, Germanovich L N. Crack growth under biaxial compression[J]. Engineering Fracture Mechanics, 2002, 69(18): 2187-2198
[15]李术才. 加锚断续节理岩体破坏机理及工程应用[M]. 北京: 科学出版社, 2010.
[LI S C. Damage mechanism and engineering application of anchor fracture joints[M]. Beijing: Science Press, 2010.(in Chinese)]
[16]李术才, 杨磊,李明田, 等. 三维内置裂隙倾角对类岩石材料拉伸力学性能和断裂特征的影响[J]. 岩石力学与工程学报, 2009,28(2): 281-289.
[LI S C, YANG L, LI M T, et al. Influences of 3-D internal crack dip angle on tensile mechanical properties and fracture features of rock-like material[J]. Chinese Journal of Rock Mechanics and Engineering, 2009,28(2): 281-289.(in Chinese)]
[17]付金伟,朱维申,雒祥宇,等.含三维内置断裂面新型材料断裂体破裂过程研究[J]. 中南大学学报(自然科学版), 2014,45(9): 3257-3263.
[FU J W, ZHU W S, LUO X Y, et al. Study on fracture process of new material with three-dimensional built-in fracture surface[J]. Journal of Central South University (Science and Technology), 2014, 45(9): 3257-3263.(in Chinese)]
[18]周杰,刘礼标,黄龙生. 人工单节理砂岩的三轴试验研究[J].水文地质工程地质,2017,44(4):85-90.
[ZHOU J, LIU L B, HUANG L S. Triaxial compression test on sand stone specimen with single artificial joint[J]. Hydrogeology & Engineering Geology, 2017, 44(4): 85-90. (in Chinese) ]
[19]周辉, 孟凡震, 张传庆, 等. 不同位置和尺寸的裂隙对岩体破坏影响的试验研究[J]. 岩石力学与工程学报, 2015,34(增刊1): 3018-3028.
[ZHOU H, MENG F Z, ZHANG C Q, et al. Experimental study on the impact of fracture of different positions and sizes on rock mass destruction[J]. Chinese Journal of Rock Mechanics and Engineering, 2015,34(Sup 1): 3018-3028.(in Chinese)]

备注/Memo

备注/Memo:
收稿日期: 2018-06-18; 修订日期: 2018-10-31
基金项目: 地质灾害防治与地质环境保护国家重点实验室自由探索课题资助(SKLGP2017Z008);四川省教育厅重点项目资助(15ZA0075);四川省科技计划资助(18YYJC1764)
第一作者: 郭朋瑜(1996-),男,硕士研究生,研究方向为重大地质灾害稳定性预测评价。E-mail: 1045364497@qq.com
通讯作者: 吉锋(1980-),男,副教授,研究方向为重大地质灾害稳定性预测评价。E-mail: jeifens@163.com
更新日期/Last Update: 2019-05-15