[1]马昊,黄达,肖衡林,等.江北机场高填方夯后碎块石土剪切力学性质研究[J].水文地质工程地质,2019,46(3):88.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.12]
 MA Hao,HUANG Da,XIAO Hengling,et al.A study of the shear mechanical properties of high-filled gravel-block soil after dynamic compaction near the Jiangbei airport[J].Hydrogeology & Engineering Geology,2019,46(3):88.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.12]
点击复制

江北机场高填方夯后碎块石土剪切力学性质研究()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年3期
页码:
88
栏目:
工程地质
出版日期:
2019-05-15

文章信息/Info

Title:
A study of the shear mechanical properties of high-filled gravel-block soil after dynamic compaction near the Jiangbei airport
文章编号:
1000-3665(2019)03-0088-07
作者:
马昊1黄达12肖衡林3王俊杰4马文浩5
1.重庆大学土木工程学院,重庆400044;2. 河北工业大学土木与交通学院,天津300401;3.湖北工业大学土木建筑与环境学院,湖北 武汉430068;4. 重庆交通大学国家内河航道整治工程技术研究中心,重庆400074;5. 空军航空大学,吉林 长春 130022
Author(s):
MA Hao1 HUANG Da1 2 XIAO Hengling3 WANG Junjie4 MA Wenhao5
1.School of Civil Engineering, Chongqing University, Chongqing400044, China; 2.School of Civil and Transportation, Hebei University of Technology, Tianjin300401, China; 3. School of Civil Engineering, Architecture and Environment, Hubei University of Technology,Wuhan, Hubei430068,China; 4.Engineering Research Center of Diagnosis Technology and Instruments of Hydro-Construction, Chongqing Jiaotong University, Chongqing400074, China;5. Aviation University of Air Force, Changchun, Jilin130022, China
关键词:
高填方碎块石土剪切力学性质数值模拟图像处理
Keywords:
high fill gravel-block soil shear behavior numerical simulation image processing
分类号:
TU411.7
DOI:
文献标志码:
A
摘要:
重庆江北机场高填方边坡高度普遍为60~120 m,填料主要为砂、泥岩混合料,含石量非常高,也存在较多大粒径块石。对夯后填土开挖4 m深(强夯填土分层厚度)的大探坑,测试夯后填土的密度、物质组成,并拍照获取现场图像。通过筛分测试及图像处理技术,得到了夯后填料的级配曲线及结构特征。从工程尺度,将夯后填料粒径小于60 mm的视为胶结物,通过重塑样直剪试验测试标定其剪切性质。基于现场照片的图像分析,建立符合工程实际的夯后填土大尺度颗粒流数值模型,考虑粒径60 mm以上的碎块石的真实分布,模拟研究了江北机场高填方体夯后高含石量填料的剪切变形、损伤演化及剪切强度特征,揭示了夯后填料临近峰值及峰后剪应力与法向位移波动特征、大块石及含石量对剪切带分叉及绕石和峰后剪切应力跌落的影响规律。
Abstract:
The high-filled slopes near the Chongqing Jiangbei Airport are generally 60-120 m high, and the fill is mainly the sand-mudstone mixture, with high stone content and large-size block stone. Exploratory pits were excavated to 4 m deep to measure the density and composition of the fill and get the scene images. Combining grading test with image processing technology was carried out, and the whole grading curve of the fill was obtained. From the engineering scale, the gravel-block soil with the size less than 60 mm after dynamic compaction was taken as the soil particles in the numerical simulation. The shear properties of the soil were tested with the direct shear test with the remolded samples. Based on the photo analysis, numerical models of large-scale particle flow of fill were set up. The grained stones’ actual distribution was considered in the numerical test. The shear behavior, damage evolution and shear strength of the fill in near the Jiangbei Airport were simulated. The results show the fluctuation characteristics of shear stress and normal displacement when the fill reaches and exceeds the peak value. The effects of large stone and stone content on the shear band bifurcation and post-peak shear stress dropping are also discussed.

参考文献/References:

[1]徐则民,张倬元,许强,等. 九寨黄龙机场填方高边坡动力稳定性分析[J]. 岩石力学与工程学报,2004,23(11): 1883-1890.
[XU Z M, ZHANG Z Y, XU Q, et al. Dynamic stability analysis of high fill slope of Jiuzhai-Huanglong airfield [J]. Chinese Journal of Rock Mechanics and Engineering, 2004,23(11): 1883-1890. (in Chinese)]
[2]何兆益,周虎鑫,吴国雄. 攀枝花机场高填方地基强夯处理试验研究[J]. 重庆交通学院学报,2002, 21(1): 51-55.
[HE Z Y, ZHOU H X, WU G X. The field test study of high embankment foundation compaction in Panzhihua airport[J]. Journal of Chongqing Jiaotong University, 2002, 21(1): 51-55. (in Chinese)]
[3]李天斌,刘吉,任洋,等. 预加固高填方边坡的滑动机制:攀枝花机场12#滑坡[J]. 工程地质学报,2012,20(5): 723-731.
[LI T B, LIU J, REN Y, et al. Sliding mechanism of high-fill slope with pre-reinforced piles at Panzhihua airport[J]. Journal of Engineering Geology, 2012, 20(5): 723-731. (in Chinese)]
[4]李晓,廖秋林,赫建明,等. 土石混合体力学特性的原位试验研究[J]. 岩石力学与工程学报,2007,26(12): 2377-2384.
[LI X, LIAO Q L, HE J M, et al. Study on in-situ tests of mechanical characteristics on soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(12): 2377-2384. (in Chinese)]
[5]徐文杰,胡瑞林. 土石混合体概念、分类及意义[J]. 水文地质工程地质,2009,36(4):50-56.
[XU W J, HU R L. Conception, classification and significations of soil-rock mixture[J]. Hydrogeology & Engineering Geology, 2009,36(4):50-56. (in Chinese)]
[6]张晓健,龚辉,艾传井,等. 泥质页岩-粉质黏土土石混合填料原位水平推剪试验研究[J]. 水文地质工程地质, 2017,44(3):79-85.
[ZHANG X J, GONG H, AI C J, et al. Research on horizontal push-shear in-situ test of pelitic shale-silty clay mixture[J]. Hydrogeology & Engineering Geology, 2017,44(3): 79-85. (in Chinese)]
[7]龚辉,张晓健,艾传井,等. 土石混合料填方体原位剪切试验方法探讨[J].长江科学院院报,2018,35(4):91-96.
[GONG H, ZHANG X J, AI C J, et al. Two methods of in-situ shear test for soil-rock mixture filling: problems and analysis[J]. Journal of Yangtze River Scientific Research Institute,2018,35(4):91-96. (in Chinese)]
[8]夏加国,胡瑞林,祁生文,等. 含超径颗粒土石混合体的大型三轴剪切试验研究[J]. 岩石力学与工程学报, 2017,36(8):2031-2039.
[XIA J G, HU R L, QI S W, et al. Large-scale triaxial shear testing of soil rock mixtures containing oversized particles[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(8):2031-2039. (in Chinese)]
[9]胡峰,李志清,胡瑞林,等. 基于大型直剪试验的土石混合体剪切带变形特征试验研究[J]. 岩石力学与工程学报,2018,38(3):766-778.
[HU F, LI Z Q, HU R L, et al. Research on the deformation characteristics of shear band of soil-rock mixture based on large scale direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2018,38(3):766-778. (in Chinese)]
[10]廖秋林,李晓,郝钊,等. 土石混合体的研究现状及研究展望[J]. 工程地质学报,2006,14(6):800-807.
[LIAO Q L, LI X, HAO Z, et al. Current status and future trends of studies on rock and soil aggregates (RSA)[J]. Journal of Engineering Geology, 2006,14(6):800-807 (in Chinese)]
[11]Cen D F, Huang D, Ren F. Shear deformation and strength of the interphase between the soil-rock mixture and the benched bedrock slope surface[J]. Acta Geotechnica, 2017,12(2):391-413.
[12]GB/T 50145—2007 土的工程分类标准[S]. 北京: 中国计划出版社, 2008.
[GB/T 50145—2007 Standard for engineering classification of soil[S]. Beijing: China Architecture and Building Press,2008. (in Chinese)]
[13]Medley E W. The engineering characterization of melanges and similar block-in-matrix rocks (bimrocks)[D]. University of California, Berkeley, 1994.
[14]丁秀丽,李耀旭,王新. 基于数字图像的土石混合体力学性质的颗粒流模拟[J].岩石力学与工程学报, 2010,29(3): 477-484.
[DING X L, LI Y X, WANG X. Particle flow modeling mechanical properties of soil and rock mixtures based on digital image[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 477-484. (in Chinese)]
[15]吴红刚,冯文强,艾挥,等. 山区机场高填方边坡工程实践与研究[J]. 防灾减灾工程学报, 2018, 38(2): 385-400.
[WU H G, FENG W Q, AI H, et al. Engineering practice and research on high fill slope of mountainous airport[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(02):385-400. (in Chinese)]
[16]赵瑞欣,殷跃平,李滨,等. 库水波动下堆积层滑坡稳定性研究[J].水利学报,2017,48(4):435-445.
[ZHAO R X, YIN Y P, LI B, et al. Research on the colluvial landslide stability during reservoir water level fluctuation[J]. Journal of Hydraulic Engineering,2017,48(4):435-445. (in Chinese)]

备注/Memo

备注/Memo:
收稿日期: 2018-09-15;修订日期: 2018-10-25
基金项目: 国家自然科学基金面上项目资助(41672300;41472245)
第一作者: 马昊(1993-),男,硕士研究生,主要从事工程地质、岩土工程等研究。Email: mahgeo@126.com
通讯作者: 黄达(1976-),男,教授,博士生导师,主要从事岩土工程等研究。E-mail: hdcqy@126.com
更新日期/Last Update: 2019-05-15