[1]熊江,唐川,龚凌枫.基于HEC-HMS模型的不同雨型泥石流流量变化特征[J].水文地质工程地质,2019,46(3):154.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.21]
 XIONG Jiang,TANG Chuan,GONG Lingfeng.Flow characteristics of different rainfall type debris flow based on the HEC-HMS model[J].Hydrogeology & Engineering Geology,2019,46(3):154.[doi:10.16030/j.cnki.issn.1000-3665.2019.03.21]
点击复制

基于HEC-HMS模型的不同雨型泥石流流量变化特征()
分享到:

《水文地质工程地质》[ISSN:1000-3665/CN:11-2202/P]

卷:
46卷
期数:
2019年3期
页码:
154
栏目:
环境地质
出版日期:
2019-05-15

文章信息/Info

Title:
Flow characteristics of different rainfall type debris flow based on the HEC-HMS model
文章编号:
1000-3665(2019)03-0153-09
作者:
熊江唐川龚凌枫
成都理工大学地质灾害防治与地质环境保护国家重点实验室,四川 成都610059
Author(s):
XIONG JiangTANG ChuanGONG Lingfeng
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu,Sichuan610059, China
关键词:
泥石流HEC-HMS雨型流量特征
Keywords:
debris flow HEC-HMS rain type flow change
分类号:
P642.23
DOI:
文献标志码:
A
摘要:
为了探究不同雨型条件下泥石流流量变化特征,通过搜集汶川震区典型泥石流降雨数据,将其概化为三次峰值早到型、三次峰值型、三次峰值晚到型三种雨型。以HEC-HMS水文模型构建高家沟流域模型,在获得流域清水流量结果基础上采用雨洪修正法计算不同雨型下泥石流流量。结果表明三次峰值早到型、三次峰值型、三次峰值晚到型峰值清水流量分别为33.5,41.5,45.8 m3/s,泥石流峰值流量分别为166.83,206.67,228.08 m3/s,误差为-25.6%、-7.8%、1.7%;三种雨型下流量从上游至沟口以线性方式演变,且随降雨峰值推迟其演变速率不断增大,而增长幅度逐渐减小;泥石流暴发出现在峰值降雨前后,属于降雨激发型泥石流;三种雨型随降雨峰值推迟,流量增长阶段所需时间越长,分别为5.5,6,9 h,而衰退阶段所需时间越短,分别为14.5,8,2.5 h。研究表明该模型能为缺少降雨监测数据地区泥石流研究提供技术支持。
Abstract:
In order to explore the characteristics of debris flow discharge under different rainfall patterns, the rainfall data of typical debris flow in Wenchuan earthquake zone were collected and generalized into three rainfall types: three peaks early-arrival type, three peak type and three peaks late-arrival type. By constructing the Gaojia gully watershed model with the HEC-HMS hydrological model and based on the results of clear water flow in the basin, the debris flow under different rainfall patterns was calculated by the rain-flood correction method. The results show that the peak clear water flow rates of the three peaks early-arrival type, three peaks type and three peaks late-arrival type were 33.5 m3/s, 41.5 m3/s and 45.8 m3/s, respectively. The peak flow of debris flow was 166.83 m3/s, 206.67 m3/s and 228.08 m3/s, respectively with the errors of -25.6%, -7.8% and 1.7%, respectively. The runoff of the three patterns of rainfall evolved linearly from the upstream to the gully mouth. As the peak value of rainfall delays its rate of evolution continues to increase, and the growth rate gradually decreases. Debris flow bursts before and after the peak rainfall, which is a rainfall-inducing debris flow. As the peak rainfall delays, the flow growth phase takes a longer time of 5.5 h, 6 h and 9 h, respectively. The recession phase requires a shorter time of 14.5 h, 8 h and 2.5 h, respectively. The results show that the model can provide technical support for debris flow researches in areas without detailed rainfall monitoring data.

参考文献/References:

[1]许冲,徐锡伟. 2008年汶川地震导致的斜坡物质响应率及其空间分布规律分析[J].岩石力学与工程学报,2013,32(增刊2):3888-3908.
[XU C,XU X W. Response rate of seismic slope mass movements related to 2008 Wenchuan earthquake and its spatial distribution analysis[J].Chinese Journal of Rock Mechanics and Engineering,2013, 32(Sup2):3888-3908.(in Chinese)]
[2]黄润秋,李为乐. 汶川地震触发崩塌滑坡数量及其密度特征分析[J].地质灾害与环境保护,2009,20(3):1-7.
[HUANG R Q, LI W L. Analysis on the number and density of landslides triggered by the 2008 Wenchuan earthquake,China[J]. Journal of Geological Hazards and Environment Preservation, 2009,20(3):1-7. (in Chinese)]
[3]黄润秋. 汶川地震地质灾害后效应分析[J].工程地质学报,2011,19(2):145-151.
[HUANG R Q. After effect of geohazards induced by the Wenchuan earthquake[J]. Journal of Engineering Geology, 2011,19(2):145-151. (in Chinese)]
[4]唐川. 汶川地震区暴雨滑坡泥石流活动趋势预测[J].山地学报,2010,28(3):341-349.
[TANG C. Activity tendency prediction of rainfall induced landslides and debris flows in the Wenchuan earthquake areas[J]. Journal of Mountain Science, 2010,28(3):341-349. (in Chinese)]
[5]周伟,唐川,周春花. 汶川震区暴雨泥石流激发雨量特征[J].水科学进展,2012,23(5):650-655.
[ZHOU W, TANG C, ZHOU C H. Critical rainfall characteristics for rainfall-induced debris flows in Wenchuan earthquake affected areas[J].Advances in Water Science, 2012, 23,(5):341-349. (in Chinese)]
[6]Wei ZHOU, Chuan TANG. Rainfall thresholds for debris flow initiation in the Wenchuan earthquake-stricken area, southwestern China[J]. Landslides,2014(11):877-887.
[7]舒和平,马金珠,张鹏,等. 不同降雨频率单沟泥石流灾害风险评价[J].兰州大学学报(自然科学版),2014,50(5):653-658.
[SHU H P, MA J Z, ZHANG P, et al. Risk assessment of debris flow hazards in different rainfall frequencies[J]. Journal of Lanzhou University (Natural Sciences), 2014,50(5):653-658. (in Chinese)]
[8]张国平,晁瑗,许凤雯,等. 站点密度对泥石流当日雨量和前期有效雨量计算的影响[J].地理研究,2011,30(7):1237-1243.
[ZHANG G P, CHAO Y, XU F W, et al. The influence of gauge density on the interpolation of critical and antecedent effective precipit-ation that triggered the debris flow[J]. Geographical Research, 2011,30(7):1237-1243. (in Chinese)]
[9]王纳纳,唐川,唐宏旭. 基于HEC-HMS的水打沟泥石流汇流过程[J].山地学报,2015,33(3):318-325.
[WANG N N, TANG C,TANG H X. Conflux process of debris flow in shuida gully using HEC-HMS model[J].Mounta in Research, 2015,33(3):318-325.(in Chinese)]
[10]王纳纳,唐川. 基于FLO-2D的都江堰市龙池镇黄央沟泥石流数值模拟[J].地质灾害与环境保护,2014,25(1):107-112.
[WANG N N, TANG C. Numerical simulation of huang yang gully debris flow Long Chi town Du Jiang Yan city based on FLO-2D[J]. Journal of Geological Hazards and Environment Preservation, 2014,25(1):107-112. (in Chinese)]
[11]高波,任光明,王军,等. 四川汶川高家沟泥石流形成条件与启动机理研究[J].中国地质灾害与防治学报,2014,25(4):1-5.
[GAO B, RENG G M, WANG J, et al. Study on information conditions and initiation mechanism of Gaojia gully’s debris flow in Wenchuan County[J]. The Chinese Journal of Geological Hazard and Control, 2014,25(4):1-5. (in Chinese)]
[12]于鑫. 基于WRF模式和HEC-HMS水文模型的西苕溪流域洪水预报研究[D]. 南京:南京信息工程大学,2014.
[YU X. Flood forecasting research of Xitiaoxi river watershed based on WRF model and HEC-HMS hydrologic model[D]. Nanjing:Nanjing University of Information Science and Technology,2014. (in Chinese)]
[13]张文,孟祥瑞,刘民生,等. 基于HEC-HMS模型的不同雨型下泥石流清水流量特征探讨[J].工程地质学报,2017,25(4):1073-1082.
[ZHANG W, MENG X R, LIU M S.et al .Discussion on clean water flow characteristics of debris flow under different rainfall types based on HEC-HMS[J].Journal of Engineering Geology, 2017,25(4):1073-1082. (in Chinese)]
[14]US Army Corps of Engineer Hydrologic Engineering Center..Hydrologic modeling system HEC-HMS user’s manual[M].US:US Army Corps of Engineer Hydrologic Engineering Center,2013.
[15]孙向阳,王根绪,吴勇,等. 川西亚高山典型森林生态系统截留水文效应[J].生态学报,2013,33(2):501-508.
[SUN X Y, WANG G X, WU Y. et al. Hydrologic regime of interception for typical forest ecosystem at subalpine of Western Sichuan,China[J]. Acta Ecologica Sinica, 2013,33(02):501-508. (in Chinese)]
[16]缪韧. 水文学原理[M].北京:水利水电出版社,2007.
[LIAO R. Principle of hydrology[M].Beijing: Water Resources and Hydropower Press,2007. (in Chinese)]
[17]周健民, 沈仁芳. 土壤学大辞典[M]. 北京: 科学出版社, 2013.
[ZHOU J M, SHEN R F. Soil science dictionary[M].Beijing: Science Press,2013. (in Chinese)]
[18]PATIL J P,SARANGI A,SINGH A K,et al. Evaluation of modified CN methods for watershed runoff estimation using a GIS-based interface[J]. Biosystems Engineering, 2008,100(1):137-146.
[19]符素华,王向亮,王红叶,等. SCS-CN径流模型中CN值确定方法研究[J].干旱区地理,2012,35(3):415-421.
[FU S H, WANG X L, WANG H Y, et al. Meathod of determining CN value in the SCS-CN method[J].Arid Land Geography, 2012,35(3):415-421. (in Chinese)]
[20]USDA. Soil conservation service. national engineering hand-book[M].US:USDA,1993.
[21]USDA. Statewide urban design and specifications [M]. US:USDA, 2013.
[22]赵晶,黄强,郝鹏,等. 基于SCS模型实时洪水预报系统的研究[J].西安理工大学学报,2013, 29(4): 386-391.
[ZHAO J, HUANG Q,HAO P, et al. Research on flood real-time forecasting based on SCS mode[J].Journal of Xi’an University of Technology, 2013,29(4):386-391. (in chinese)]
[23]谢平,叶守泽. 河道洪水演算方法之间参数关系的研究[J].水电能源科学,1993(4):242-247.
[XIE P, YE S Z. The research on parameters relationship among of the methods channel flood routing[J].Internationnal Jounal Hydroelectric Energy, 1993(4):242-247. (in Chinese)]
[24]张雄,裴向军,裴钻,等. 极震区泥石流流量计算方法的研究[J].自然灾害学报,2014,23(6):227-233.
[ZHANG X, PEI X J, PEI Z, et al. Study on discharge calculation method of debris flows in meizoseismal areas[J].Journal of Natural Disasters, 2014,23(6):227-233. (in Chinese)]
[25]沈寿长,谢修齐,项行浦,等. 暴雨泥石流流量计算方法研究[J].中国铁道科学,1993(2):80-89.
[SHEN S C, XIE X Q, XIANG X P, et al. On estimation of debris flow discharges[J]. China Railway Science, 1993(2):80-89. (in Chinese)]
[26]Yang WANG, Peng CUI, Zhaoyin WANG, et al. Threshold criterion for debris flow initiation in seasonal gullies[J]. International Journal of Sediment Research,2017,32(2):231-239.

相似文献/References:

[1]孙健,陶慧,杨世伟,等.皖南山区地质灾害发育规律与防治对策[J].水文地质工程地质,2011,38(5):98.
 SUN Jian,TAO Hui,YANG Shi-wei,et al.Development characteristics and prevention measures of geological hazards in mountain area of southern Anhui Province[J].Hydrogeology & Engineering Geology,2011,38(3):98.
[2]齐干,张长敏.达摩沟泥石流形成的物质条件分析及防治对策[J].水文地质工程地质,2011,38(5):102.
 QI Gan,ZHANG Chang-min.Analysis on material conditions causing to debris blow and its control countermeasures in Boddhidharma Trench[J].Hydrogeology & Engineering Geology,2011,38(3):102.
[3]胡向德,黎志恒,魏洁,等.舟曲县三眼峪沟特大型泥石流的形成和运动特征[J].水文地质工程地质,2011,38(4):82.
 HU Xiang-de,LI Zhi-heng,WEI Jie,et al.Formation and kinematic characteristics of the debris flow disaster at the Sanyanyu gulley,Zhouqu County of Gansu Province[J].Hydrogeology & Engineering Geology,2011,38(3):82.
[4]王磊,徐林荣,苏志满,等.V型排导槽内泥石流流速横向分布探讨[J].水文地质工程地质,2010,37(6):112.
 WANG Lei,XU Lin-rong,SU Zhi-man,et al.A study of the transverse velocity distribution of debris flow in a V-shaped drainage canal[J].Hydrogeology & Engineering Geology,2010,37(3):112.
[5]吴光明,张志其.一次奇特的泥石流[J].水文地质工程地质,2009,36(5):121.
 WU Guang-ming,ZHANG Zhi-qi.A strange debris flow[J].Hydrogeology & Engineering Geology,2009,36(3):121.
[6]巴仁基,王丽,宋志,等.泸定县牧场沟泥石流动力特性预测[J].水文地质工程地质,2008,35(6):75.
 BA Ren-ji,WANG Li,SONG Zhi,et al.The prediction of dynamic characteristics on debris flow in Muchang valley of Luding County[J].Hydrogeology & Engineering Geology,2008,35(3):75.
[7]张开军,殷跃平,张作辰,等.滑坡崩塌泥石流灾害详细调查规范研究[J].水文地质工程地质,2008,35(6):99.
 ZHAN Kai-jun,YIN Yue-ping,ZHANG Zuo-chen,et al.A study of the investigation guideline on landslides,rockfalls and debris flow hazards[J].Hydrogeology & Engineering Geology,2008,35(3):99.
[8]韩 征,徐林荣,苏志满,等.基于流域形态完整系数的泥石流容重计算方法[J].水文地质工程地质,2012,39(2):100.
 HAN Zheng,XU Lin-rong,SU Zhi-man,et al. Research on the method for calculating the bulk density of debris flow based on the integrity coefficient of watershed morphology [J].Hydrogeology & Engineering Geology,2012,39(3):100.
[9]李文强,石豫川,王敬勇.雅鲁藏布江中游某水电站库区泥石流工程影响分析[J].水文地质工程地质,2013,40(1):89.
 LI Wen-qiang,SHI Yu-chuan,WANG Jing-yong.Impacts of debris flows on the reservoir of a hydropower station in the middle of the Yarlung Zangbo River[J].Hydrogeology & Engineering Geology,2013,40(3):89.
[10]丁桂伶,王翊虹,冒建,等.北京市泥石流易发区降雨预警阈值研究[J].水文地质工程地质,2017,44(3):136.
 DING Guiling,WANG Yihong,MAO Jian,et al.A study of the rainfall threshold of debris flow forewarning in Beijing based on susceptibility analysis[J].Hydrogeology & Engineering Geology,2017,44(3):136.

备注/Memo

备注/Memo:
收稿日期: 2018-08-29; 修订日期: 2019-01-03
基金项目: 国家重点研发计划项目(2017YFC1501004);国家自然科学基金项目(41672299)
第一作者: 熊江(1991-),男,硕士研究生,主要从事工程地质与地质灾害防治方面研究。E-mail:2029476606@qq.com
通讯作者: 唐川(1961-),男,博士生导师,教授,主要从事地质灾害、环境地质等方面研究。E-mail:tangc@cdut.edu.cn
更新日期/Last Update: 2019-05-15